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EFFECT OF PERIODIC BOTTOM ROUGHNESS ON GRAVITATIONAL WAVES IN A LIQUID 

V. I. Merkulov, A. P. Mikhailov, 
and S. O. Savchenko 

UDC 532.59 

The effect of a rigid bottom of periodic form on small periodic oscillations of 
the free surface of a liquid is considered with the assumption of low amplitude 
roughness. The methodologically most significant study in this direction, [i], 
will be utilized. In [i] the steady-state problem for flow over an arbitrarily 
rough bottom was studied. Other studies have recently appeared on small free os- 
cillations above a rough bottom. Essentially these have considered the effect 
of underwater obstacles and cavities on surface waves in the shallow-water approx- 
imation (for example, [2], [3]). Liquid oscillations in a layer of arbitrary 
depth slowly varying with length were considered in [4]. However, these results 
cannot be applied to the study of resonant interaction of gravitational waves 
with a periodically curved bottom. 

i. We will consider a plane layer of nonviscous incompressible liquid extending in- 
finitely in the x-direction and lying in a gravitational field above a periodically rough 
bottom (Fig. i). The form of the bottom is specified by the function a%(x), where a is 
the amplitude of the bottom roughness, H is the mean height of the layer. The studies were 
carried out using dimensionless variables, the wavelength of the bottom period being taken 
equal to 2~. Only periodic small free oscillations of the layer at rest were studied, with 
the conditions a << i, a/H << i. 

Let ~ be the velocity potential. Then if the liquid density is much greater than the 
density of air and (V~) = is small, a linearized boundary problem for small free oscillations 
on a rough bottom is known (see, for example, [5, 6]): 

O(p I a.__.~ = i a~] ( i . i )  A~----0, j~-----Oy=a~(,), ay g at ~ ~=u 

or for a single harmonic ~ = eimtu(x, y) 

where n is a unit vector normal to the line of the bottom. 
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The surface wave period must be equal to an integral multiple of the bottom roughness 
period. This can be proven by assuming the opposite, and requiring periodicity of the veloc- 
ity potential and all its derivatives and continuity of these values along y. 

2. Let the period of the surface wave equal m periods of bottom roughness. The region 
occupied by liquid between maxima of the bottom roughness, located at a spacing of 2~m from 
each other along the x-coordinate, can be conformally mapped into a ring so that the bottom 
line transforms to the outer circumference and the surface line, to the inner circumference, 
as was done in [i] (Fig. 2). 

The liquid-filled region is mapped from the plane z into a region on the plane ~ with 
polar coordinates p, e. To the accuracy of small terms of second order in a the converse 
mapping has the form 

z = - - i r a  I n  ~ + a/(~) + iH~ 

as follows from the results of [7]. For the modulus of the derivative on the inner circum- 
ference we find 

where ~(e) = 2(Ref' + Imf')Ip=l , a(8) is a function dependent on the bottom profile and ob- 
viously periodic with the period selected. Thus, in place of boundary problem (i.i), (1.2), 
we obtain a new boundary problem for the bounded area in the plane ~: 

Ag(p, 0, t) = 0,, Au(p, 0) = 0; ( 2 . i )  

O~(p, 0, t ) O p  = 0 o=e  H I m '  Ou(@,O)op = 0 p=eH/m;  ( 2 . 2 )  

0$(p, 0, t) i 02r p=l' 0u _ ~2 I 
0p -- g X 0t---7- ap g Zu,p=l' ( 2 . 3 )  

where  @,(p, 0, t ) =  e i ~ t u ( p ,  e ) .  

In  t h e  f u t u r e  we w i l l  c o n s i d e r  t h e  s econd  b o u n d a r y  p r o b l e m  f o r  t h e  p o t e n t i a l  u ( p ,  0 ) .  
T h i s  i s  t h e  c l a s s i c a l  Neumann p r o b l e m  f o r  a r i n g .  With  t he  s o l u t i o n  o f  t h i s  p r o b l e m  p r e s e n t e d  
i n  [ 8 ] ,  f o r  t h e  c a s e  o f  e q u a l i t y  to  z e r o  o f  t h e  d e r i v a t i v e  of  t he  v e l o c i t y  p o t e n t i a l  on the  
o u t e r  c i r c u m f e r e n c e  a t  p = 1, t he  s o l u t i o n  o f  b o u n d a r y  p r o b l e m  ( 2 . 1 ) - ( 2 . 3 )  r e d u c e s  to  an i n t e -  
g r a l  e q u a t i o n  f o r  t h e  unknown n a t u r a l  o s c i l l a t i o n s  of  t h e  f r e e  s u r f a c e :  

oo 

bh sinkO) J 
~rg ~ i  k 

The s e r i e s  ~_~(ahcoskO+bksinkO ) i s  t h e  F o u r i e r  e x p a n s i o n  o f  t h e  unknown f i n i t e  v e l o c i t y  
k 

p o t e n t i a l ,  so t h a t  t h e  s e q u e n c e  o f  i t s  p a r t i a l  sums i s  f i n i t e ,  and t h e  s e q u e n c e  { c t h ( k H / m ) / k }  
d e c r e a s e s  m o n o t o n i c a l l y  and c o n v e r g e s  to  z e r o .  By D i r i c h l e t ' s  p r i n c i p l e  such  a s e r i e s  c o n -  
v e r g e s  u n i f o r m l y .  We can i n t e r c h a n g e  t h e  o r d e r  of  i n t e g r a t i o n  and summat ion  o p e r a t i o n s ,  o b -  
t a i n i n g  t h e  e q u a t i o n  

u (0) [p=l -~Bo----~- ~ u(~)H(O, q~)dfp~ (2.4) 

where 
co 

h=l 
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The series in Eq. (2.4) does not converge at @ = ~ ~ but the singularity which appears in 
this case asymptotically has the form in sin(@ -- ~), i.e., is integrable. 

We have obtained the most general equation for free surface oscillations in the given 
formulation. It is important to note that the problem within a region was reduced to a 
problem on the free surface line, and that the desired function u(@) depends only on the 
one variable 8. 

Below we will use u(~) to indicate the potential value on the boundary 0 = i. 

Let H << 1 and the first harmonics be the carriers (the maximum symmetry case). Then 
from Eq. (2.4) we can obtain the Hill equation 

" m2~2( a ) 
uO +-~--- l+--~(O) u=O~ (2.5) 

or 

u~ + [~ (~) + v (oD ~ (0) 1 ~ = O, 
where 

~(~) = m2~VgH; ~(~2) = am~VgH. 

A similar result follows from shallow-water theory (see for example [5]). 

Figure 3 shows the stability diagram of this equation presented in [9], with instability 
regions cross-hatched. These correspond to solutions which increase without limit along co- 
ordinate @ and do not relate to the formulation of the problem. 

The bases of the instability "wedges" with coordinates n2/4 correspond tO resonant fre- 
quencies (as understood in [9]). 

AS was shown in [9], boundaries between stability and instability regions with even num- 
bers correspond to a periodic solution, but in this case the second independent solution of 
Eq. (2.5) is infinite. If at some point in the parameter plane the boundaries of stability 
regions contact each other, which corresponds to a double root of the eigenvalue problem, 
then both independent solutions of Eq. (2.5) are periodic and finite for these parameters. 
Inasmuch as Eq. (2.5) was obtained to the accuracy of terms of second-order smallness in 
a, the narrow instability regions (with width of the order of a 2) can be considered approxi- 
mately constricted into a line, while both independent solutions of Eq. (2.5) are finite and 
periodic. 

Thus periodic oscillations are possible only at frequencies equal to the accuracy of 
terms second order in a to resonant frequencies with even numbers and corresponding to nar- 
row instability regions. 

3. We will consider the case where the bottom profile has the form 

aL(x) ~ a sin x and m i-= t.  

Performing the mapping, rectifying a band of unit width [7], and performing certain 
additional transformations, we obtain an image which rectifies and rotates by ~/2 a slightly 
curved band of width H: 

W = z - - - - ~  + ~  yo(t) cth - f ~ ( - - z - - t  d t  + - ~  .. 

where i -- y(t) specifies the profile of the bottom boundary, and yo(t) gives the top boundary: 

t - -  y(t)  = a sin t~ go(t) = O. 

The latter integral of Eq. (3.1) is calculated, and the final image on the ring has the form 
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The modulus of the derivative of the converse image: 

( ~ ) =z(o) 

With consideration of the relationships obtained Eq. (2.5) 

tion: 

transforms to Mathieu' s equa- 

u " + 7 -  f f  

We s e e k  a s o l u t i o n  by  t h e  p e r t u r b a t i o n  m e t h o d :  

H n n a Uo + ~ u2, 

Uo n = C sin n 0 + C'  cos nO, 

a 
u = 0 ,  - ~ - < < t ,  H < < t .  

(co ) 2=grin 2, n =  l ,  2 . . . .  

In the first order of smallness in a/H A = 0 for any n in accordance with the results of 
section 2, since for Mathieu's equation all instability regions corresponding to periodic 
solutions are narrow [9]. 

For the eigenfunctions, we obtain in the original coordinates: 

a C ( R  l s i n ( ( n + t )  x - c o n t + q % ) +  u n (x) = C sin (nx - -  O)nt + q)o) + -ff  

+ R~ s in  ( (n  - -  t )  x - -  r + q%), 

i ~2  n 2 

R~ = -~ n + A ,  R~ = 5 n - -  B ,  A - -  2 (2n -~- t) ' B = 2 (2n - -  1) " 

n ~  
q% = - ~ - ,  n =  1, 2, . . . .  

For n = 1 R2 = 0. A similar expression can be obtained for the expansion in cosines with the 
same arguments. 

Thus, each eigenfunction for the oscillations of the surface of a thin liquid layer with 
bottom sinusoidal in form can be represented in the form of three (at n = i, two) traveling 
waves: a carrier, the length of which corresponds to the wavelength of the unperturbed har- 
monic, and two satellite waves with wave numbers one more and one less (lagging and leading the 
carrier) with amplitudes of the order of a/H. At n = 1 only the lagging satellite remains. 

We will consider the general integral equation (2.4) for a bottom profile of sinusoida! 
form: 

r a cos k (0 - -  q~) ctg kHd~? ' u (0) = B o + 7-ff u (~) i - -  s ~  cos ~ k 

Substituting the Fourier expansion for u(9), integrating over 9, and equating to zero the sum 
of the coefficients for each power of the sine and cosine, we obtain an infinite linear homo- 
geneous system of algebraic equations with matrix of tridiagonal form for the coefficients of 
the Fourier expansion of the velocity potential: 

( i  - -  ao)2711)C1 -~- a712o)2C2 ---~ 0 ,  ( 3 . 2 )  

~o2a721C 1 -}- (I -- ao)2722)C2 -}- aco2y2aCa ---- 0~ 
. . . . .  . . . . .  . , . . 

a(o2"~i,i_lCi_l -~ (i ~ a o . ) 2 " ~ i , i )  C{,i- ~ ao2?i, i+lCi+l .~ 0~ 
I cth iH i 

~i,~ ~ g i ' V i , i - 1  ----- ~ i , i + l  ---- ~ .  

We denote by A(~ 2) the determinant of this infinite system. An equivalent system can be ob- 
tained for determination of C' The free term is found from the condition 

o [ )] - -  0)2 t " 

a u = 0 - - - - - - - % ( 0 )  u ( 0 ) _ - = _ _ ( l - - c o s 0  ) N o T  C n s i n n O T C a c o s n O  ,: 
0p g g ' 

1 
Bo = . - ~  C1. 
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TABLE i 

4 0,995843 

5 0,995843 

6 0,995843 

3O 0,995843 

* 0,996799 

3,952574 I 8,749723 15,287594 

3,952538 I 8,7496662 15,2t4654 23,274828 

3,952538 I 8,74962 i5,214345 23,129334 32,507671 

3,952538 I 8,749662 15,2i4345 23,i28842 32,250240 

3,947506 I 8,739378 15,197952 23,105858" 32,222230 

I C~ C8 C4 Cs 

~1 I t,0000 1 1,687i.10-2 --t,0867-10-a 3,8252.t0-~ 8,6579.t0-1o 

~2 I 6'6626"10-~ I 1,000 --4,t386.10 -~ 7,2996-10 -4 7,5742-10 -8 

~ I 5'123t'10-3 I 9'0943't0-2 1,0000 --6,8293.10 -~ --2,09i6.t0 -a 

I �9 I . . . . .  . . . . . . .  
Clo  

1,0000 

I Cs I C9 
I --5,i92i.i0-~- I --3,0899.i0-' 

Cll 

--3,4956.10 - 1  (Plo 

TABLE 2 

C12 

--5,9042. I0 -~ 

i 

(o p) h 

3 4,6028 t5,2534 27,735i 

4 4,6028 i5,2522 27,i445 39,7733 

5 4,6028 t5,2520 27,1297 38,5573 5i,39i7 

30 4,6028 t5,2520 27,i296 38,49i5 49,925i 

* 4,62i2 i5,2319 27,i544 38,56ii 49,9330 

C2 C~ C4 C5 

--4,2068.i0 -2 8,5223.i0 -4 i,iSi5.iO -5 --i,2843.10 -7 

t,0000 --i,2815-10 -1 --8,5989.10 -2 4,0706-10 -4 

2,1437.i0 -1 i,O000 2,4944.i0 -1 --3,250i. 10 -2 

C 9 C10 Cll C12 

--5,8336 t,0000 --3,6057 6,1495 

C1 

r i,O0000 

cp2 t,3596- t0 -1 

(P3 2,4793. t0 -2 

(Plo Cs 

(~lo --3,348i �9 10 -1 

C]a 

(Plo 2,5445 2,i414.t0 -1 

We take CI=I and write system (3.2) in the form of Eq. (3.3) AC = f, with All = 0 (i # i). 
Let A be a nondegenerate matrix. Then the corresponding homogeneous system does not have a 
nonzero solution. Consequently [i], Eq. (3.3) has a uniquely defined solution which satisfies 
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the condition ~C~<~. This means that Eq. (3.2) has a unique, to the accuracy of a single 
i 

arbitrary constant, nonzero solution. We will seek a solution of Eq. (3.3) by the reduction 
method, which assumes for each approximation k the fulfillment of the condition Ak(~ 2) = O. 
By definition A(o2)= ]imAh(o~),: Ak(o~)=0 (w k will be found from this equation). It is then 

obvious that if Jim ~ = ~ , then A(~) = 0, which ensures finding a unique solution (to the 

accuracy of an arbitrary constant) of Eq. (3.2) as the limit of the sequence {c~k)}. 
[ 

System (3.3) was solved numerically, reducing it to the problem of the eigenvalues of 
the equation BC = %C, where % is related to ~ by the expression ~( 2 _ i) = i. 

For each eigenvalue of Eq. (3.3) the coefficients of the Fourier expansion of the eigen- 
functions can be found. 

The calculation results are presented in Tables 1 and 2 for H = 0.i, a = 0.01; H = 0.5, 
a = 0.i; ~, ''', ~n are the largest coefficients of the eigenfunction Fourier transforms; 
(~)(k) is the k-th approximation of the eigenfrequency. 

Analysis of Tables 1 and 2 reveals the rapid convergence of the successive approxima- 
tions for the eigenvalues. For the first eigenvalues there is a "triadicity" of the Fourier 
expansions, which confirms the results obtained by the perturbation method for Mathieu's equa- 
tion. 

The squares of the frequencies in the table row denoted by * correspond to the case 
= 0. 

i. 

2. 

. 

. 

5. 

6. 
7. 

8. 

9. 
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